Unlocking New Possibilities: Rethinking Analytics Orchestration with SAP Datasphere's Enhanced Task Chains
PorAinvest
viernes, 8 de agosto de 2025, 2:48 am ET1 min de lectura
SAP--
The new capability allows users to add a REST API step within a task chain, facilitating the integration of external systems and services. This feature expands the possibilities for task chains, enabling them to orchestrate workflows, enrich data pipelines, and interact with microservices and third-party data sources [1]. For instance, users can trigger a microservice that extracts data from a third-party system and writes it into SAP Datasphere using the OPEN SQL schema, or initiate a predictive analytics process after data has been pushed to an external storage location [1].
This update aligns with SAP's broader strategic shift towards more API-driven architectures. The ability to call external REST APIs directly from within a Task Chain is a small yet significant change that paves the way for loosely coupled, event-driven, and more modular system landscapes [1]. It also opens doors for scheduling planning-related actions, enabling more automation and operational efficiency in planning processes [1].
The integration of REST API steps in SAP Datasphere Task Chains is part of SAP's ongoing commitment to continuous improvement and innovation. The platform's enhancements are designed to meet the evolving needs of modern data-driven organizations, offering greater functionality and ease of use.
References:
[1] https://community.sap.com/t5/technology-blog-posts-by-sap/sap-datasphere-news-in-july/ba-p/14168445
SAP Datasphere Task Chains now support REST API steps, enabling integration with external systems and paving the way for event-driven, loosely coupled architectures. This addition significantly expands integration potential, allowing task chains to trigger or interact with external systems via REST APIs. It opens doors for scheduling planning-related actions, advanced analytics on external buckets, and more. This shift towards API-driven architectures suggests a broader strategic shift within SAP, with practical use cases including microservices and third-party data sources, and advanced analytics on external buckets.
SAP Datasphere, a comprehensive data management platform, has recently introduced a significant update to its Task Chains feature, enabling the integration of REST API steps. This enhancement allows task chains to trigger or interact with external systems via REST APIs, significantly expanding the platform's integration potential [1].The new capability allows users to add a REST API step within a task chain, facilitating the integration of external systems and services. This feature expands the possibilities for task chains, enabling them to orchestrate workflows, enrich data pipelines, and interact with microservices and third-party data sources [1]. For instance, users can trigger a microservice that extracts data from a third-party system and writes it into SAP Datasphere using the OPEN SQL schema, or initiate a predictive analytics process after data has been pushed to an external storage location [1].
This update aligns with SAP's broader strategic shift towards more API-driven architectures. The ability to call external REST APIs directly from within a Task Chain is a small yet significant change that paves the way for loosely coupled, event-driven, and more modular system landscapes [1]. It also opens doors for scheduling planning-related actions, enabling more automation and operational efficiency in planning processes [1].
The integration of REST API steps in SAP Datasphere Task Chains is part of SAP's ongoing commitment to continuous improvement and innovation. The platform's enhancements are designed to meet the evolving needs of modern data-driven organizations, offering greater functionality and ease of use.
References:
[1] https://community.sap.com/t5/technology-blog-posts-by-sap/sap-datasphere-news-in-july/ba-p/14168445

Divulgación editorial y transparencia de la IA: Ainvest News utiliza tecnología avanzada de Modelos de Lenguaje Largo (LLM) para sintetizar y analizar datos de mercado en tiempo real. Para garantizar los más altos estándares de integridad, cada artículo se somete a un riguroso proceso de verificación con participación humana.
Mientras la IA asiste en el procesamiento de datos y la redacción inicial, un miembro editorial profesional de Ainvest revisa, verifica y aprueba de forma independiente todo el contenido para garantizar su precisión y cumplimiento con los estándares editoriales de Ainvest Fintech Inc. Esta supervisión humana está diseñada para mitigar las alucinaciones de la IA y garantizar el contexto financiero.
Advertencia sobre inversiones: Este contenido se proporciona únicamente con fines informativos y no constituye asesoramiento profesional de inversión, legal o financiero. Los mercados conllevan riesgos inherentes. Se recomienda a los usuarios que realicen una investigación independiente o consulten a un asesor financiero certificado antes de tomar cualquier decisión. Ainvest Fintech Inc. se exime de toda responsabilidad por las acciones tomadas con base en esta información. ¿Encontró un error? Reportar un problema

Comentarios
Aún no hay comentarios